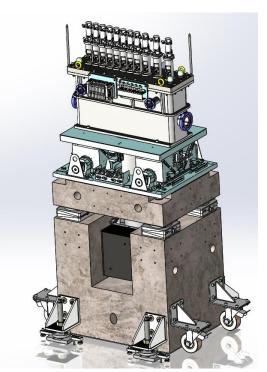
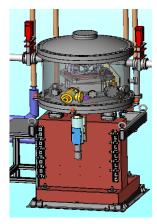

ESRF | The European Synchrotron

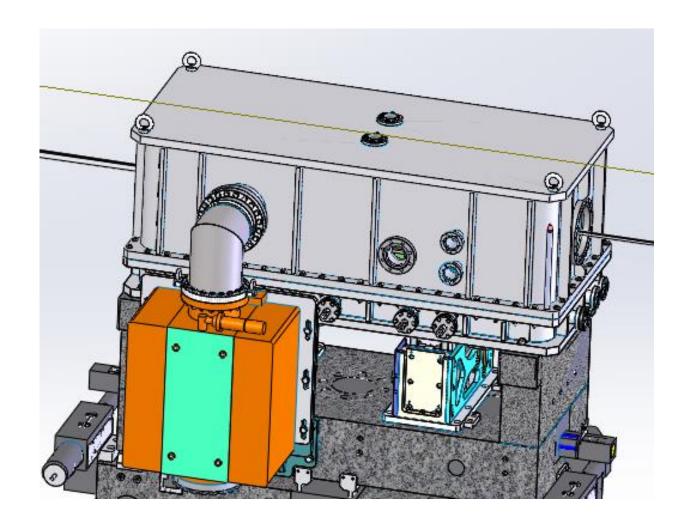
FORTHCOMING PROCUREMENTS FOR THE ESRF FROM NOW TO END 2021


- > The ESRF is strongly interested in enlarging its network of industrial partners from its member countries
- ➤ In the mechanical field, the following capabilities are required for the ESRF instrumentation:
 - Manufacture of Ultra High Vacuum chambers: Stainless steel welding, sheet metal working, precision machining, cleanliness, vacuum testing
 - Vacuum brazing
 - High precision machining of parts of different sizes (1 to 1500 mm typically). Mainly stainless steel and aluminum alloy
 - · Assembly of precision motion systems
 - Welded steel frames
 - · Design, manufacture and tests of precision motion systems
 - Design, manufacture and tests of complete beamline specific instruments (slits, monochromators, etc...)

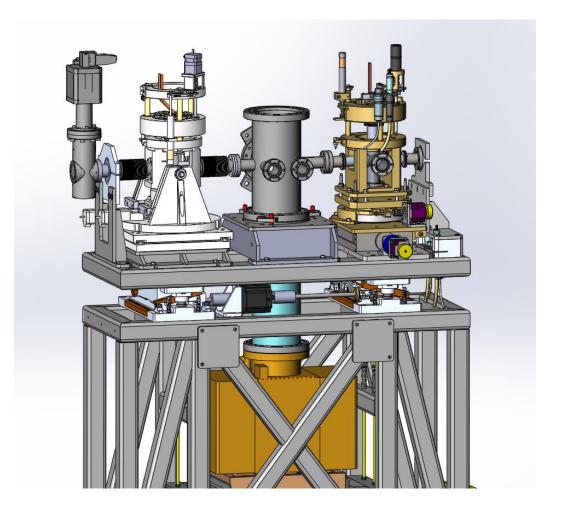

PICTURES

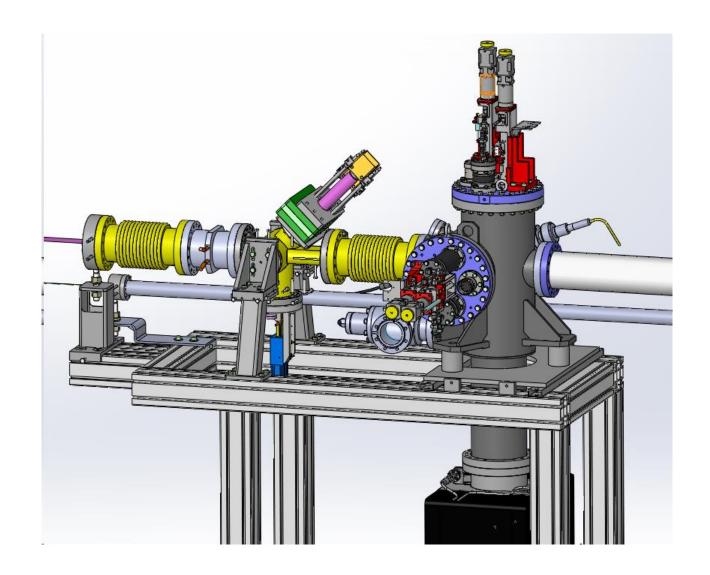

Double Multilayer monochromator

Transfocator



Ceramic chamber




Beamline specific instrumentation: Vertical axis monochromator

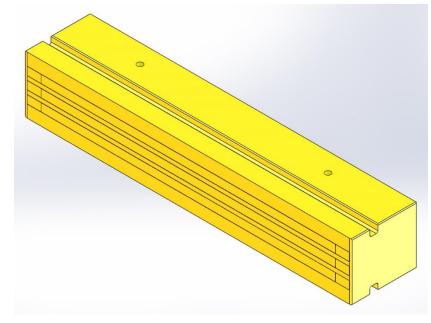
Beryllium lenses

TOROIDAL MIRROR (ID09 ESRF)



Material-coating: Silicon-Pt Roughness ≤ 2Å rms Radii of curvature:

- Sagittal: 71.60 mm
- Meridional: 25 km


Slope error (RMS)

- 0.7 µrad over 450 mm
- 1.0 µrad over 900 mm

X-RAY MIRROR SPECIFICATION

	M1	
substrate		
surface geometry	flat	
material	Si <100>	
dimensions (L x W x H) / mm	400 x 70 x 80 +/- 0.5	
	rectangular	
optical surface		
clear aperture (L x W) / mm	360 x 40	
type of footprint	rectangular	
geometry parameters		
minimum meridional radius	> 25 km	
minimum sagittal radius	> 100 m	
surface quality		
meridional slope error	≤ 0.5 µrad (rms)	
Option 1:	≤ 0.3 µrad (rms)	
meridional shape error (75% of 20 20x2mm² areas,	≤ 4 nm (pv)	
spatial sa in the middle 100mm)	1 - 360 mm	
sagittal slope error	≤ 10.0 µrad (rms)	
spatial sampling	1 - 40 mm	
microroughness		
MSFR (mid spatial frequency roughness) (ZYGO 2,5x+50x)	≤ 0.3 nm (rms)	
spatial sampling	20 μm - 1 mm	
coating	s	
material 3 stripes:	Pt + bare + Pd	
thickness / nm	50nm +/- 10nm	
binding layer	5nm Cr	

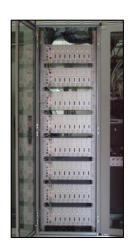
- Mirrors used in grazing incidence (θ):
- Linear profile measurements often sufficient
- Sagittal direction tolerances relaxed by factor 1/sin(θ)

	Optical parameters	Type of measurement	Device	Resolution	spatial sampling area
m	surface quality	Interferometry	Carl Zeiss D100 direct measuring Interferometer	< 1 nm	1 mm < λ < 1000 mm
1	physical dimensions	Tactile coordinate measurement	Carl Zeiss precision coordinate measuring device UPMC 850 S-ACC Carat	< 300 nm	
	MSFR	Micro- interferometry	ZYGO NewView 700 (magnification 50x)	< 0.1 nm	0.58 μm < λ < 290 μm
	MSFR	Micro- interferometry	ZYGO NewView 700 (magnification 2,5x)	< 0.1 nm	11.7 μm < λ < 5.84 mm
	HSFR	Atomic force microscopy	Nanosurf Nanite S200 AFM	< 0.1 nm	16 nm < λ < 2 μm
					0.00

(A) MOTION CONTROL - ESRF STANDARD SOLUTION

- **In-house development**
- . Stepper motors
- . Unique interface with the ESRF control system
- . Cost effective solution

- . 8 axes per crate
- . 1 controller board
- . System up to 128 axes


The standard solution for motion control at the ESRF

Also used for other types of motors with adequate interfaces

- . More than 6000 axes installed at the ESRF
- . Around 9 000 in total

. Collaboration with ALBA & MAX IV

(B) BL CONTROL - IN HOUSE DEVELOPPED INSTRUMENTATION

- Stand-alone
- . Ethernet control
- Highly Standardized:Hardware, Firmware, Software
- . Reduce development lead time

- . A range of instruments for Beamline control
- → Counting, synchronization, encoder processing, ...
- → FMC compatible
- . And also **Accelerator** specific applications

DAnCE

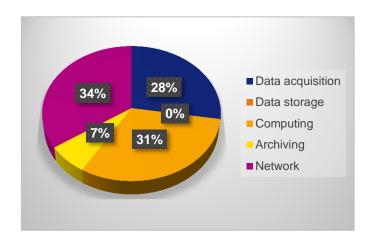
Data Acquisition & Control Electronics platform

Standard Hardware modules and bricks

Standard Digital board (FPGA + ARM)
 Standard or customized carrier board

Embedded in 19"case

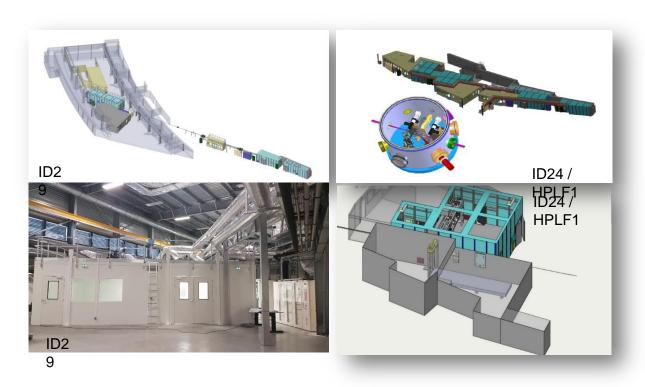
Qseven ARM® processor

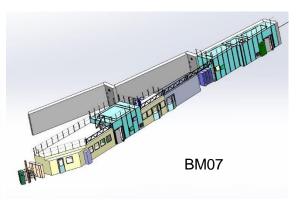


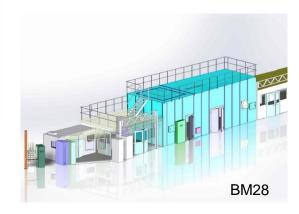
ESRF IT INFRASTRUCTURE

Estimated Investment for 2021

Data acquisition: 800 k€
Data storage: 1200 k€
Computing: 900 k€
Archiving: 200 k€
Network: 1000 k€


Long Term Planning (2025)


- Data acquisition: increase capacity for detector throughput up to 10 GB/sec
- Data storage: increase capacity up to 30 PB
- Computing: increase the computing capacity by factor of 3 to 10 including IA specific solutions
- Archiving: increase to 300 PB, possible replacement of the libraries tape systems
- Network: adaptation to the infrastructure, regular upgrade and replacement



HUTCH

PIPING

COVID-19 HYGIENIC MEASURES

o People must wear a surgical mask or a FFP2 mask without exhalation valve on ESRF site (outside and inside buildings).

 For specific interventions without a minimum of 2 meters between people, facial screen and FFP2 mask without exhalation valve can be imposed.

ESRF Safety Training for Contractors

Thank you for your attention